If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-6a-25=0
a = 1; b = -6; c = -25;
Δ = b2-4ac
Δ = -62-4·1·(-25)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{34}}{2*1}=\frac{6-2\sqrt{34}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{34}}{2*1}=\frac{6+2\sqrt{34}}{2} $
| 22f-28=10 | | k/4+19=21 | | 5x-14=4x-3x+6 | | -18.2c-12.58=-2.95-17.3c | | 1.8=8t-(4.9)t^2 | | j/2+6=9 | | -(x-20)=16 | | 7+5x=-1+4x | | 3c+4+c=13-c | | -6w/5=12 | | d/20+720+d/16=840 | | 2.5=15-(.5)q | | -6w/5=30 | | 41+5y-14=15y-13-12y | | n-59/7=4 | | 8=-4+2w | | p=15-(.5)25 | | 8(k+3)=96 | | 6=-2+2s | | -5b=155 | | -16=f/2+-6 | | (y^2-8)^2-2(y^2-8)+1=0 | | 14=15-(.5)q | | .5x+-3=-71 | | 8+2d=-8 | | v-9/3=8 | | 2/3s=s/6+6/3 | | 18.19+10.12-18.5j=-3.1j+8.29 | | -55=2(2x)+ | | 5x+7/2-3x+9/4=2x+4/3+5 | | -2/3y-3/4y=5 | | P=13+4d/11 |